Một số câu hỏi có trong đề thi này:
Mục lục
Câu 37
Có bao nhiêu số nguyên $x$ thỏa mãn bất phương trình $frac{log{2023}(x+1)^2}{x^2-5x-6}>frac{log{2024}(x+1)^3}{x^2-5x-6}$?
A. 2023
B. 2024
C. 7
D. 5
Câu 38
Cho hình chóp $S.ABC$ có $SA=SB=SC=a$, $widehat{ASC}=widehat{CSB}=60^0$, $widehat{ASB}=90^0$. Khoảng cách từ $A$ đến $(SBC)$ bằng
A. $frac{asqrt{3}}{3}$
B. $frac{asqrt{6}}{2}$
C. $frac{asqrt{6}}{3}$
D. $frac{asqrt{6}}{6}$
Câu 39
Trên mặt phẳng tọa độ, biết tập hợp các điểm biểu diễn các số phức $z$ thỏa mãn $|z-2+3i|=sqrt{3}$ là một đường tròn. Tính bán kính của đường tròn đó.
A. $sqrt{3}$
B. $9$
C. $2sqrt{3}$
D. $3$
Câu 40
Cho hàm số $f(x)$ liên tục, có đạo hàm trên $mathbb{R}$, $f(2)=16$ và $int{0}^{2}{f(x)dx}=4$. Tích phân $int{0}^{4}{xcdot f’left(frac{x}{2}right)dx}$ bằng
A. $56$
B. $12$
C. $112$
D. $144$
Câu 41
Cho hình lăng trụ đứng $ABC.{A}'{B}'{C}’$ có đáy $ABC$ là tam giác vuông, $AB=BC=a$. Biết rằng góc giữa hai mặt phẳng $(AC{C}’)$ và $(A{B}'{C}’)$ bằng $60^0$. Tính thể tích khối chóp ${B}’.AC{C}'{A}’$.
A. $frac{a^3}{3}$
B. $frac{a^3sqrt{3}}{3}$
C. $frac{a^3}{6}$
D. $frac{a^3}{2}$
Câu 42
Cho hàm số $f(x)$ liên tục trên thỏa mãn $int{-2}^{2}{fleft(sqrt{x^2+5}-xright)dx}=1$, $int{1}^{5}{frac{f(x)}{x}dx}=3$. Tính tích phân $int_{1}^{5}{f(x)dx}$.
A. $frac{13}{2}$
B. $-13$
C. $13$
D. $-26$
Câu 43
Xét các số phức $z_1, z_2$ thỏa mãn $|z_1-3-4i|=1$, $|z_2+1|=|z_2-i|$ và $frac{z_1-z_2}{2-i}$ là số thực. Gọi $M, m$ lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của $|z_1-z_2|$. Tính $P=M+m$.
A. $P=16sqrt{5}$
B. $P=14sqrt{5}$
C. $P=18sqrt{5}$
D. $P=20sqrt{5}$
Câu 44
Gọi $S$ là tập hợp các số thực $m$ thỏa mãn hàm số $y=2m{x}^{4}+{x}^{3}-({m}^{2}+1){x}^{2}+18x$ đồng biến trên $mathbb{R}$. Số phần tử của $S$ là
A. $1$
B. $0$
C. $3$
D. $2$
Câu 45
Trong không gian $Oxyz$, cho điểm $M(3;2;1)$. Mặt phẳng $(P)$ đi qua $M$ và cắt các trục tọa độ $Ox, Oy, Oz$ lần lượt tại các điểm $A, B, C$ không trùng với gốc tọa độ sao cho $M$ là trực tâm tam giác $ABC$. Xác định phương trình mặt phẳng $(P)$.
A. $2x+y+3z+9=0$
B. $3x+2y+z-14=0$
C. $3x+2y+z+14=0$
D. $2x+y+z-9=0$
Câu 46
Có bao nhiêu cặp số nguyên $(x,y)$ thỏa mãn $|x|le 2023$ và $2^{x+2y}+3^{{x}^{2}-3y-2}(x+2y-3)=8$?
A. $1$
B. $4047$
C. $2023$
D. $2024$
Câu 47
Cho tứ diện đều $ABCD$ có cạnh bằng $a$. Một mặt cầu $(S)$ tiếp xúc với ba đường thẳng $AB, AC, AD$ lần lượt tại $B, C, D$. Tính diện tích của mặt cầu $(S)$.
A. $4pi {a}^{2}$
B. $3pi {a}^{2}$
C. $2pi {a}^{2}$
D. $6pi {a}^{2}$
Câu 48
Trong không gian $Oxyz$, cho mặt cầu $(S):{x}^{2}+{(y-3)}^{2}+{(z-4)}^{2}=36$. Xét hai điểm $M, N$ thay đổi trên mặt cầu $(S)$ sao cho $MN=10$. Tìm giá trị nhỏ nhất của $T=OM^2-ON^2$.
A. $-100$
B. $20$
C. $-60$
D. $-120$
Câu 49
Trên tập hợp số phức, xét phương trình ${z}^{2}+4az+{b}^{2}+2=0$, ($a, b$ là các tham số thực). Có bao nhiêu cặp số thực $(a,b)$ sao cho phương trình đã cho có hai nghiệm ${z}_1, {z}_2$ thỏa mãn $({z}_1-3)+(2{z}_2-3)i=0$?
A. $3$
B. $2$
C. $4$
D. $1$
Câu 50
Cho hàm số bậc bốn $y=f(x)$ có bảng biến thiên như hình vẽ sau:
Có bao nhiêu giá trị nguyên dương của tham số $m$ để hàm số $g(x)={e}^{f(x)}-m{.3}^{f(x)}$ có đúng $7$ điểm cực trị?
A. $4$
B. $1$
C. $3$
D. $2$
Giải:
Ta có $ycbt Leftrightarrow {g}'(x)={f}'(x)cdot{e}^{f(x)}-mcdot{f}'(x)cdot{.3}^{f(x)}ln 3={f}'(x)left[ {e}^{f(x)}-mln{3cdot{3}^{f(x)}} right]$ có đúng 7 lần đổi dấu
$Leftrightarrow {e}^{f(x)}-mln{3cdot{3}^{f(x)}}$ có đúng $7-3=4$ lần đổi dấu vì ${f}'(x)$ đổi dấu 3 lần
Xét ${e}^{f(x)}-mln{3cdot{3}^{f(x)}}=0Leftrightarrow {left( frac{e}{3} right)}^{f(x)}=mln 3Leftrightarrow f(x)={{log}{frac{e}{3}}}(mln3)$
Vậy $-3<{{log}_{frac{e}{3}}}(mln3)<5Leftrightarrow {{left( frac{e}{3} right)}^{5}}<mln3<{{left( frac{e}{3} right)}^{-3}}$
$Leftrightarrow 0,55approx frac{1}{{ln 3}}{{left( frac{e}{3} right)}^{5}}<m<frac{1}{{ln 3}}{{left( frac{e}{3} right)}^{-3}}approx 1,22Rightarrow m=1$. Chọn đáp án B.
Xem trực tiếp và tải đề thi về (Bản đẹp của đề thi kèm đáp án và lời giải chi tiết sẽ được Vted cập nhật trong thời gian sớm nhất)
Các đề sưu tầm năm nay của các Trường THPT và Sở Giáo dục cùng các đề thi học sinh giỏi Toán 12 dạng trắc nghiệm được Vted phát hành trong khoá Luyện đề Xplus
Cập nhật Lịch học|Bài giảng|Đề thi|Live X 2023 (Nhấn vào để xem chi tiết)
Xem thêm Cập nhật Đề thi thử tốt nghiệp THPT 2023 môn Toán có lời giải chi tiết
Xem đề thi đã phát hành trước đó: [XMIN 2023] Đề số 108 – Đề thi thử TN THPT 2023 môn Toán lần 2 trường THPT chuyên ĐH Vinh – Nghệ An